N=xus

cost-of-use analysis for : LAUNDRY DEIERGENT

1 WAIER USED TO DISPENSE PRODUGT:

U S CHEMICAL	Competitor
$2 \times 3100 \mathrm{~mL}$	36 lb. case
0 gal. used	$\mathbf{1 7 . 1}$ gal. used per Ib.*

2 WATER USED PER GASE TO DISPENSE PRODUGT
U S Chemical
(A) $=0$ gal. per case
(B) $=36 \mathrm{lb} . \times 17.1=615.6 \mathrm{gal}$.

Competitor

3 NEXUS VS. EXGESS GALLONS OF WATER TO DISPENSE SOLID:
(A) - (B) $=$ Excess
0-615.6 = 615.6

4 GOST 10 HEAT WATER USED IN DISPENSING PRODUGT TO WASH TANK:

	$\mathbf{8 . 3 3}$
Times	$\mathbf{7 5}$
Equals	$\mathbf{6 2 4 . 7 5}$
Divided	$\mathbf{3 4 1 3}$
Equals	$\mathbf{0 . 1 8 3 0 5 0 1 0 3}$
Times	$\mathbf{0 . 2 1}$
Equals	$\mathbf{\$ 0 . 0 3 8 4}$
Times	$\mathbf{6 1 5 . 6}$
Equals	$\mathbf{\$ 2 3 . 6 6}$

Pounds $=$ Weight of 1 gal . of water Degree rise (60 incoming raised to 135)
BTU's required per gallon
BTU conversion factor to kWh
kWh
National average cost per kWh**
Cost per gallon for 60 degree rise
Excess gallons consumed
(C) Excess cost for heating transport water

> Pounds = Weight of 1 gal. of water Degree rise (135 incoming raised to 160)
> BTU's required per gallon
> BTU conversion factor to kWh
> kWh
> National average cost per kWh
> Cost per gallon for 25 degree rise
> Excess gallons consumed
> (D) Excess cost for heating transport water in wash tank

6 GOST OF WATER USED TO TRANSPORT DEIERGENI:
National average cost for water per 1000 CF (cubic feet) is: \$ 15.00
National average cost for sewage per 1000 CF (cubic feet) is: $\$ 1.50$
Conversion factor for CF to gallons is 0.13368
$615.6 \times 0.13368=82.293408$
$82.293408 / 1000 \times 3=$ cost of transport water
(E) \$0.25 = cost of transport water

7 TOTAL ADDIIONAL GOST TO DISPENSE A GASE OF SOLID DEIERGENT:

Electric (C)	+	Wash tank electric (D)		Water cost (E)		Total additional cost
\$ 23.66	+	\$ 7.89	+	\$ 0.25	=	

[^0]DU 5 Chemical L004030

[^0]: * All examples shown are based upon actual laboratory conditions of constant water pressure and constant water temperatures.
 ${ }^{* *}$ Actual electric, water and sewage rates vary. Use of the actual rate for each utility in your area to provide an accurate picture of the conditions in a case. Actual costs could be significantly higher... and the savings could be much greater.

